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Energy expressions to the 4th order of accuracy are derived from a partitioned CI matrix; these 
expressions are identical in each order, to the corresponding formulas derived in the frame of Rayleigh- 
Schr6dinger perturbation theory. 

Von einer aufgespaltenen CI-Matrix werden Energieausdriicke bis zur 4. Ordnung entwickelt. 
Diese Ausdrficke sind fiir jede Ordnung identisch mit den im Rahmen der Rayleigh-SchriSdingerschen 
St6rungstheorie entwickelten Formeln. 

1. Introduction 

One  of the m a i n  deficiencies in the H a r t r e e - F o c k  m e t h o d  is tha t  a single 
de t e rminan t  represents  a wave  funct ion,  which in pr incip le  mus t  be a p p r o x i m a t e d  
by  an  infini tely long expansion.  To correct  this i nadequacy  m o r e  terms are  
needed,  which arc  conven t iona l ly  i n t roduced  by  means  of  admi t t ing  conf igura t ion  
in te rac t ion  (CI). N u m e r o u s  s tudies  have conf i rmed the favourab le  effect tha t  
ei ther  full or  j ud ic ious  inc lus ion  of  C] has  on the wave funct ion and  on the 
expec ta t ion  values der ived  f rom it. Recent  de ta i led  studies have been m a d e  on 
Benzene [1] and  on C O  [2]. A l though  CI  admiss ion  is in pr inciple  a s t ra ight-  
fo rward  process,  in pract ice  the l a b o u r  involved  m a y  quickly  become proh ib i t ive ly  
expensive.  Suppose  2N elec t rons  and  K a tomic  orb i ta l s  are  involved  (K>=N), 
then  for full CI  ( l imit ing ourselves  to singlet s tates  only) in a basis  tha t  extends 
over  all  poss ib le  e igenfunct ions  of the S 2 opera to r ,  one has to  bui ld  and  d iagona l ize  
a ma t r ix  of size 

L=o\N-L ] L! ( L +  1)[ t=N, K>__2N (1) 

co r r e spond ing  to  all  poss ib le  0, 1, 2, 3 . . . . .  2 N  exci ta t ions  1. Even for a re la t ively 
smal l  system compr i zed  of 4 e lec t rons  and  6 orb i ta l s  (say, L i H  in a doub le  zeta  
basis), Eq. (1) yields M = 105, which  is a l r eady  qui te  large. I t  is conc luded  that  

1 General expressions for M, the dimension of a CI problem over a basis of S 2 operator eigen- 
functions, as a function of K, N and S (2S + 1 being the state multiplicity) have been previously given 
by Mulder [-17], and by other authors listed in his paper. The derivation of Eq. (1) in the present 
communication is similar in approach to that given by 1-17], but differs from it in some details. It 
is therefore documented in the Appendix. 
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except for very small systems, the effort needed to overcome the CI size barrier 
may outweigh that invested in computing the basic molecular integrals. Clearly a 
simplifying procedure is needed; in looking for a device to reduce the CI scheme to 
manageable dimensions one may resort to Perturbation Theory 1,3-6]. According 
to standard Rayleigh-Schr6dinger perturbation theory (henceforth RS) and with 
the familiar notation (H = H ° +  ~H'; ~--+ 1), one has for the correct energy of a 
perturbed level n: 

0 t 0 2 
E, o , o , o (~n[Hl~m)  

. . . .  IV.>+ Z m , .  E o _ t o  +. . .  (2) 

where the power of e determines the order of the perturbation. To make the 
connection with CI one formally equates integrals of type H',m in (2) with the 
nm'th CI matrix element; thus the molecular Hamiltonian implicitly assumes the 
role of a perturbation between the energy levels. Recently this procedure was 
examined in detail 1,,7-11]. The numerical results obtained by these authors 
suggest that in many cases it would be feasible to apply second (or higher) order 
perturbation theory to proceed beyond the SCF limit. In view of these encouraging 
results, it would be useful to elaborate on the formal relation between the CI 
and RS methods, in the particular context of MO calculations. While the relation 
is well understood from the RS tail, it is not as clear when one assumes no 
knowledge of RS. Our starting point therefore will be the CI matrix; it will be 
stepwise and approximately diagonalized. At each stage the expressions for the 
resulting eigenvalues will be examined and the various matrix elements involved 
assigned numerical values in a manner that will indicate the relation to RS, 
subject to the particular partitioning described next. 

2. Approximate Diagonalization 

The CI matrix is constructed according to Slater's rules [12]. Zero's are put 
either for matrix elements of two states differing in more than two orbitals, or 

acc°rdingt°Brill°uin'sthe°rem'f°rIa'S'[Hlg!l;thesymb°lEistandsf°r:m 
E = state; m =  orbital excited from; n =  orbital excited to; T = excitation. Virtual 
orbitals are used for building the various excited states 1-13]. For  the diagonal 

c d  

elements, closed expressions for states of type E T ]" a ~ b, c ~ d or lesser complexity 
a b  

have been given 1,14]. B is now the CI matrix (Fig. 1). 
We have now a Hermitian matrix with the property: diagonal elements >> off- 

diagonal elements. The matrix B is in the mathematical sense "perturbed" [15] 
and we may assume that it can be expanded in a converging matrix series; ~ is 
a small parameter which labels "order", 

B = B  ° +~B I+e2Bn+- - .  (3) 

where the B's do not depend on 5. Let S be an as yet undetermined unitary matrix 
of the form 

S : S O -~ ,~S 1 -~ ~2SII  -}- . . . .  (4)  
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B O= Diag (B),. 

b cd yz 
Eat . . . . .  E i Eatt b . . . . . .  Eft wx 

. . . . . .  o 

Z / 

o .  . /  

zK 
B =  

\ 

F i g .  1 
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Ettt . . . 
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/ 
/ 
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/ 
/ 
/ 
/ 
/ 
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We adjust S in such a way that 

A = S B S  -1 A = Diag(21 ... 2,,). (5) 

S can always be chosen z to yield A,,  = 2,, i.e. the eigenvalues of A and B are 
identical in magnitude and order along the diagonal. It is suggested from (3), (4) 
and (5) that A can also be expanded in terms of a converging matrix series 

A = A ° + ,sA I 4- 82AII 4- ..- (6) 

all the A's being diagonal  Our aim now is to compute A. Substitution into a 
rearranged (5) the series on the right of (3), (4) and (6) yields 

(A o + 8A 14- ~;2AII 4- . . . )  (S O 4- ~S 14- ~2SII 4- . . . )  : (S O 4- ~sS 14- ~2StI Jr--.-) (B ° + eB I +'--)  (7) 

if (7) is to hold identically in the successive powers of e, the following sequence 
of matrix equations must hold 

A ° S  ° = S ° B  ° (8) 

A ° S  I + AIS  ° = S ° B  l + SIB ° (9) 

A ° S  II + AIS I + AIIS 0 = S ° B  11 + SIB 1 + SIIB 0 . ( 1 0 )  

( 1 1 )  

The only quantities in these equations which are known from the outset are 
the elements of B, i.e. the elements of the CI matrix. It is possible, however, with 
the help of Eqs. (8-11) to set up one after the other the A's and the S's to determine 
A to any degree of accuracy. Now, as we cannot separate the different orders of 
the B's, we are left with some freedom to assign their values, subject to (3) as 
constraint. This can be done in a manner that suits the context of a particular 

2 B y  elementary row and column operations. 

9* 
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problem. To obtain full agreement with expressions derived from RS 
must choose for the B's 

~--/=0, i----j 
B ° J =  l = 0 ,  

B~j= I=¢O, i= j  
O, ivaj 

(and not degenerate) 

B 11 = B Il l  . . . . .  0 . 

[9] one 

(12) 

This choice can of course be made independently of the RS method. Previously 
the flexibility in partitioning the Hamiltonian in the context of CI was noted 
by [7]. 

3. Diagonalization to First Order 

Let ~- ,0  so that B - , B  ° and S ~ S  °. Then since the eigenvalues of A are the 
same as those of B (identity also in order along the diagonal, as is in (5) above) 
A ° = B ° and (8) becomes 

B°S ° = S°B ° . (13) 

As S must be unitary for any e it follows that when e-~0, S O is unitary. It can be 
verified (see Appendix) that a unitary matrix (S °) which commutes with a non- 
degenerate diagonal matrix (B ° in (13)) must be diagonal itself and each of its 
diagonal elements be of modulus unity. We choose 

s o = ) .  (14) 

Now it follows from (13) and (14) that (9) takes the form 

B o s  I _ S ~ B  o = B 1 _ A ~ " (15) 

The nn'th element on both sides of (15) can be written 

0 1 I 0 I B,iSi, ~S ,  iBi, I - = B.'. - A . .  = 0 (16)  
i i 

since B ° is diagonal. Hence 

I I (17) A,, = B, , .  

If powers of e higher than the first are neglected, (6) reduces to A = A ° +  eA ~, or, 
in view of Eqs. (2) and (17) 

2, = B, ° -t- ebb,,. (18) 

Eq. (18) is identical to the expression corrected to first order in the RS method. 
According to the convention adopted for the B's in Eqs. (12), B~,, = 0  and (18) 
reduces to 

2, = B, ° (19) 
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- a similar expression was derived on different grounds in [3]. It should be noted 
that here, i _ _  B . . -  0 was adopted as a basic assumption due to our particular 
partitioning of the CI matrix and does not follow from the quality of the zero 
order wave function. 

4. Diagonalization to Second Order 

It can be verified from (9), (13) and (16) (see Appendix) that 3 

0, i= j  

SIj = B]j i # j .  (20) 
0 - -  0 ' 

Bi i  - B j j  

From a rearranged (i0) and taking advantage of (14) one finds 

A n : B II + SIB ' - A I S  I + SUB 0 - -  B ° S  II (21) 

for the diagonal elements of A n one need consider only (22) (as AiS t vanishes 
along the diagonal and B ° is diagonal) 

I I 
(AII)n n = BInIn _[_ (SIBI)n n __Bnn_t - -  II E Bnio Bi .  (22) 

i ~ n Bnn - -  B° 

thus, to the second power of e the diagonal elements of A take now the full form 

[ i ,  
)~n 0 I 2 II O'niO~n ] (23) 

= B . . + e B . . + e  B . .+  i~:n2 B.n__Bu ] o  o 

when the convention in (12) is introduced (23) is reduced to (24) - an expression 
derived from RS by Moller-Plesset [3], and used by Nesbet [4] for the approximate 
diagonalization of large matrices. 

I 1 
2 . -  o B.iBi. (24) - B . . +  ~ ~ - - - 0 "  

i~n B n n -  Bii 

5. Diagonalization to Third and Fourth Order 

From (10), (13) and (14) one obtains 

A°S n -  S n B  0 : B n - A I1 + S I B  I - A I S  I (25) 

which leads, noting that the A's are diagonal, to 

[0, i = j  
II { V  ~ I I I I (26) 

o o B ° - -  B j j  l@il Bii - Bll Bii - -  n j j  J [ Bii  - -  B j j  + o o o o o ' 

substituting to (10) and, as only diagonal elements of A m are needed (this eliminates 
terms originating from AIS n, AnS I and causes disappearance of SXIB ° - B°S ") we 

3 As we are not interested in "Expectation Values" here, the columns of S matrices will not be 
renormalized at successive intermediate steps. 
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have 
R t .Rq AIJI : Rill + E --nj--jn'~I RII + Z '~II'RI Ill - -n j~jn  

--nn --nn ~n j - - jn  = Bnn + 2 ~ o o 
j j j #n  B n n - - B j j  

l~l I~I l~!I RI R l .R I. 
+ E E o ~nla~'lJ~"Jn -- E --nn--n3--Jn 

(B,n - o o o g_ o 02  Bu) (Bn, - B j j) j ~ ,  l ~ n • (Bnn - -  B j j )  

(27) 

on introduction of the conditions specified in (12) the first two terms on the right 
hand of (27) disappear, and one remains with the third order expression in the 
RS theory. However, because of BI,,, the last term also disappears and only one 
term is left. Thus we have the third order correction for Z, 

nl'UlJ*'~'Jn (28) 
--nnAIll---- E Z ( B O B  o) o o 

( B . .  - B j j )  jg:n l~=n 

a simplification that viewed from RS [3, 7, 8] results from the particular nature 
of the variationally obtained SCF energy. A similar treatment yields for SI~ and 

IV for Ann , the correction to 4th order 

[ O, i = j  (29) 
,~IlI__~ ] (k~ ~i ~I l~I /~I /~# ]~l /~l ~l ) --ij -- [ - ~il~' lkJ"kj  "t"ila~li~'iJ i #j 

- - 0  -- ~- 0 0 0 0 -- 
[ Bii - Bjj i i " (B. - Bn) (S. - B~k) ~ (B ° - S.)° (S.° _ B~)° , 

RI RI t~I t~I IV ~ n i ~ i j ~ j l ~ ' l n  
A"n = ienZ j*nZ tenZ (BnO _ B o) (BnO _ Bjo)(BO _ B o) 

BI RI ~I RI (30) 
ni--in--nj--jn 

i *n  j * n  - B u )  ( B , n  - B j j )  

6. Discussion 

A scheme was described in which the CI matrix served as a starting point 
for the derivation of energy expressions identical to those obtained in the RS 
frame. A particular partitioning of the CI matrix allowed for the simplifications 
similar to those due to Moller-Plesset [3]. 

It must be emphasized, following [16], that this identity is formal, as it depends 
on the partitioning of the CI matrix. It appears that the CI method is related to 
the "Variation Perturbation" method [16], which encompasses RS as a special 
case. We now consider briefly the reasoning which leads to the partitioning 
adopted in (12). For  concreteness the expression in (27) is examined. It was 
initially derived for a Hamiltonian of the general form B = B ° + eB' + gZBtt -~ . . . .  

To make the CI method compatible with ordinary RS, where only 1st order 
perturbation is usually admitted, we must put Bn =  B Ill  . . . . .  0 and retain only 
B = B ° +  eB'. The role of the perturbing matrix B', is to help us assess the effect 
of extending the basis by adding configurations. At this stage only the last two 
terms on the left of (27) remain, forming the usual 3rd order correction in RS. 
A further simplification is obtained from (18). Although (18) in itself is a simple 
result in RS, it has important implications in the CI context, as it assures that the 
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eigenvalues of B corrected to first order are "diagonal". It follows that provided 
B ° is taken to be the diagonal part of the original CI matrix, one may put BI,, --- 0. 
This choice allows us to simulate the Moller-Plesset [-3] results, and to drop the 
4th term in (27) leading to the single term expression in (28). 

The arguments given above formally justify regarding a CI study for some 
state n equivalent to an ordinary RS treatment with the following characteristics: 
H = H ° + ell ' ;  (tp ° ] H'l~p °> = 0. Eqs. (28) and (30) must therefore be derivable by 
any of the methods available for construction of correction expressions in RS. 
One may choose to operate within the scheme of rules formulated by Huby 4 [18]. 
To apply his "derivation by inspection" method, and using his notation, we define 
a projection operator 

Qo = ~ I~P °)  (~p°l, (Qo 2 = Qo) (31) 

(i.e. Qo is the projector onto the space orthogonal to the state n which is presently 
under investigation) and an inverse operator a 

a=(EOHO)-t, (EnO HO)-l lpo= ° - E °  ~po (32) 
E. 

now it is well known [19] that if 

E . ' = E . ' =  . . . .  -_.F (N-j ) '=0  (33) 

then the N' th order correction is given by 

u, H' ~ (34) E, = tp ° H'  

where (33) reads 

<w°lH'lw°>=~W ° H' QOa H' ,po> . . . . .  <lpo H,(~_H,) N-2 ~po> = 0 .  

If however only corrections up to the k'th order vanish, K < N - 1, then additional 
terms (with the correct sign) must be added to expression (34), which arise from 
all possible "Bra-ket"-ing internal H' factors in (34), according to the prescription 
in [18]. For E~' we thus have 

however 

<~o H' Q°a (H')~-H' ~po> =<~o H' Q~° q~°> (~v° ,H ' ,~°>=0  

(H'.. = 0 by assumption) 

and only the first term in (35) survives, which is identical to (28). This identity 
is easily seen after substituting for Qo and a their values defined in (31) and (32). 

4 The author is indebted to a referee for bringing to his attention the papers by Mulder [17] 
and Huby [18]. 
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Similarly for E,*' one obtains 

( ° o) E~,= ~o QoH, OoU, OOu,~ 
a a a 

_ (~o . ,  eo <.,5 e o . ,  Oo., ~o; a a ~ -  / 

_<~po H' QOa H' QOa <H'>-Q° q)o,> 
(36) 

_+o o, (., .,5 o, 
:+o. ,  oo.., Ooa -' oo°,o 

Expression (36) is identical to (30) obtained for the fourth order correction by 
the approximate diagonalization method. The assertion that perturbation 
corrections may be derived from a CI matrix independently of the RS method 
is therefore shown to be correct. 

Appendix 

1. To derive the expression on the right side of (1). Consider 2N electrons 
and K atomic orbitals, and look at a case where L pairs out of the N available 
are distributed in 2L orbitals, each orbital is occupied by a single electron. This 

be effected in (2~)ways. Meanwhile the rest of the N - L  pairs can be distri- can 
\ / 

buted in \ N -  L ] ways between the vacant orbitals. The total number of ways 

to achieve a situation of (N - L) orbitals doubly occupied and 2L orbitals singly 

is [\[KN-_2L~(L ]/ 2LK). To each of these situations correspond several linearly occupied 

independent S 2 eigenfunctions, whose total number has been given by [20]. 
For 2L electrons outside a closed shell and a singlet state this number is 
[2L~ { 2L ~_ (2L)! 

Multiplying this number by the number of realized t L] - ~ L -  L!(L+I)!" 
situation and summing over all L yields 

c=o\g-Lj~ \ L[(L+I) !  t=g, K>2N. 
Judging by severn numerical checks this expression is identical to that given by 
Mulder's [17] closed formula, 

M= (N + I)(K- N + I) " 
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2. To  show tha t  S O is d i a g o n a l  a n d  each  S ° is of m o d u l u s  uni ty .  S ta r t ing  

wi th  S ° B  ° = B ° S  °, one  o b t a i n s  o n  p e r f o r m i n g  m u l t i p l i c a t i o n :  S ° ( B  ° - B j  °)  = O. 
As B ° is n o t  degenera te ,  S ° = 0. Also  S o b e i n g  u n i t a r y  leads  to S o*. S o = l ,  hence  
S o = 1. e x p ( +  iO); choose  0 = 0. 

3. T o  f ind S~j. S ince  B ° is d i a g o n a l  it fol lows f rom (16) tha t  S]j satisfies 

0 I I 0 1 .  I B[j 
Bi iSi j  -- S i jB j j  - Bi j  , Sij  - B o _ B j  0 • 

• 0 l I 0 I Similar ly ,  for Sli BiiSii- SiiBii- 0 a n d  Sii is a rb i t ra ry .  C h o o s e  Sli = 0 to  satisfy 
o r t h o g o n a l i t y  c o n s t r a i n t s :  ( S ° I S I )  = O. Th i s  choice  will  pers is t  for S~I, S~ I . . . . .  
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